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Abstract

A new model for a smart beam with a partially debonded active constrained layer damping (ACLD) patch is pre-

sented, and the effects of the debonding of the ACLD patch on both passive and hybrid control are investigated. In this

model, both shear and compressional vibrations of the viscoelastic material (VEM) layer are considered. The moment

inertia and the transverse shear effect are also taken into account based on the Timoshenko�s beam theory. The adhesive

layer between the host beam and the piezoelectric sensor patch is modeled as an elastic load transferring media. The

debonding of the ACLD patch is approximated by removing the VEM between the constraining layer and the host

beam in the debonding region, and the continuity conditions are imposed based on displacement continuity and force

balance. A modal velocity observer-based modal control scheme is also given to perform the active modal control of the

beam. In order to examine the effects of part debonding of the ACLD patch, the characteristic equation of the beam

treated with an ACLD patch is derived. The simulation example results show that an edge debonding of the ACLD

patch can significantly affect both passive and hybrid control. It is also found that the additional mode induced by the

debonding has unique effects on the modal damping ratios and frequencies of both open-loop and closed-loop system.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

With the development of technology, vibration and noise control become increasingly important in

various machinery and structure design, and more accurate active control is needed in defense and aero-

space industries. Therefore, it becomes a significant challenge to precisely control the vibration of flexible

structures.
Passive damping treatment is a traditional method to suppress vibration of structures (Douglas and

Yang, 1969). Constrained layer damping treatment is an effective way to provide significant passive

damping, which includes a viscoelastic material (VEM) layer sandwiched between a constraining layer and
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the structure to be damped. The passive constrained layer damping (PCLD) treatment has been widely used

in various fields due to its unconditional stability. In spite of their safety feature, passive damping can only

produce unadjustable damping in a limited range.

The recently developed smart/intelligent structure technology (Crawley, 1994; Rao and Sunar, 1994;
Chee et al., 1998) has great potential in precise vibration control of flexible structures such as thin plates

and shells. Piezoelectric materials such as ceramic lead zirconate titanate (PZT) and polymer polyvinyli-

dence fluoride (PVDF) are the most commonly used materials for distributed actuators and sensor due to

their characteristics of quick response, low power consumption and high linearity. Since distributed sensors

and actuators are used to replace traditional point sensors and actuators, more dimensions has been added

to active control, and hence more precise control can be achieved.

Combined the smart structures technology and passive control, an innovative concept, the active con-

strained layer damping (ACLD) treatment (Baz, 1993; Shen, 1994; Shen, 1996; Kapadia and Kawiecki,
1997; Liao and Wang, 1997; Chattopadhyay et al., 2001; Shi et al., 2001; Lee and Kim, 2001) in vibration

control of flexible structures, has been proposed. A typical ACLD consists of a VEM layer sandwiched

between the host structure and the active constraining layer, which is made of smart materials such as

piezoelectric ceramics and magnets rather than conventional materials. The active layer can function as a

conventional constraining layer to enhance the energy dissipation by enlarging the shear strain in the

damping layer. On the other hand, the active layer is also used as the actuator to perform active control.

Both passive and active control can be performed in the ACLD treatment, which consequently allows

achievement of better control results and greatly improves robustness and reliability of the closed control
system. Since the ACLD treatment has both active and passive control components, it makes the active

control system more robust, more reliable to uncertainties, and it can also increase gain and phase margins,

enhance the practicality, decrease power consumption and improve high frequency responses.

However, the fail-safe feature of the ACLD treated structures faces increasingly with new challenges,

such as possible debonding of the ACLD layer. Due to emerging application of new high performance

piezoelectric materials capable of generating large strain subject to a high electric field, the possibility of

debonding of a piezoelectric actuator and a VEM layer from a host structure greatly increases, particularly,

for the dynamic circumstances. In addition, fatigue and sudden electrical and mechanical loads may also
cause debonding of the piezoelectric layers/patches. When a debonding between an ACLD layer and a host

structure occurs, as depicted in Fig. 1, it will result in significant changes of the structural behavior par-

ticularly for closed-loop control, and may even destabilize the closed-loop control (Seeley and Chatto-

padhyay, 1998; Tylikowski, 2001; Sun et al., 2001). Thus, investigation into the effects of the ACLD

debonding on active and passive control of smart structures is of great significance.
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Fig. 1. Beam with partially debonded ACLD patches.
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In all available models of ACLD treated structures, one of the fundamental assumptions is that the

active constraining layer and the host structure have the same transverse displacement, namely, the VEM

layer does not undergo peel strain. Apparently, when a debonding in the ACLD layer occurs, this as-

sumption is no longer valid because the active constraining layer and the host structure vibrate separately in
the debonding region. Therefore, the existing theories are not capable of modeling the debonding of the

ACLD layers.

In this paper, a new model of an ACLD treated beam is presented to investigate the effects of the

partially debonded ACLD patch on both passive and hybrid control. In this model, both shear and

compressional vibration of the VEM layer are taken into account. The debonding of the ACLD patch is

modeled by removing the VEM between the constraining layer and the host beam in the debonding region,

and corresponding displacement continuity conditions and force balance conditions are also imposed. In

order to examine the effects of part debonding of the ACLD patch on passive and active control, a
characteristic equation of a beam with an ACLD patch is derived. Based on the model and the charac-

teristic equation, the effects of the debonding in the ACLD patch on both passive and active control are

studied through a simulation example.

2. Mathematical model

2.1. Basic equations based on Timoshenko’s beam theory

Consider a beam of length L and width b treated with an ACLD patch with different thickness and
length, as shown in Fig. 1. The ACLD patch consists of a piezoelectric constraining layer (actuator) to-

gether with a VEM layer bonded on the upper surface of the host beam, and a piezoelectric sensor layer on

the lower surface. In the following derivation, assume the effects of the adhesive layers on the VEM layer

can be neglected. The VEM layer and the adhesive layer between the sensor and the host beam are assumed

to carry constant transverse shear and peel strains across its thickness at a given point. Assume that all

debondings in the ACLD patches occur throughout the entire width of the beam. In the debonded region, it

is assumed that there is no stress transferring between the host beam and piezoelectric constraining layer,

and that the damping effect of the debonded VEM layer can be negligible due to its small shear and normal
strains. In other words, the debonding of the ACLD is modeled by neglecting the thin VEM layer because it

is light and soft.

Since the beam is partly covered by the ACLD patch, the governing equations should be derived in

segment. For the segment AB of the beam covered with the ACLD patch, by applying the Timoshenko�s
beam theory, the equations of motion can be derived as follows:

q1bh1u1;tt ¼ T1;x þ bsv; q1bh1w1;tt ¼ Q1;x þ brv; q1J1w1;tt ¼ M1;x þ bsvh1=2� Q1;

q2bh2u2;tt ¼ T2;x � bsv þ bsa; q2bh2w2;tt ¼ Q2;x � brv þ bra;

q2J2w2;tt ¼ M2;x þ bðsv þ saÞh2=2� Q2; q3bh3u3;tt ¼ T3;x � bsa;

q3bh3w3;tt ¼ Q3;x � bra; q3J3w3;tt ¼ M3;x þ bsah3=2� Q3

ð1Þ

where the subscripts 1, 2, 3, v and a represent the piezoelectric constraining (actuator) layer, the host beam,

the lower piezoelectric layer, the VEM layer and the adhesive layer between the sensor and the host beam,

respectively, the subscript x stands for the partial derivative with respect to x, tt is the second derivative with

respect to time t, u and w are the longitudinal and transverse displacements, h is the thickness, b is the width

of the composite beam, s and r are shear and peel stresses, T , Q and M are the stress resultants, q is the

equivalent mass densities, J is the moment of inertia, w is the rotation angle of the line element originally
perpendicular to the longitudinal axis, which is given by
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wi ¼ ci � wi;x; i ¼ 1; 2; 3 ð2Þ

and ci is the shear strain at the neutral axis and has the form

ci ¼
ciQi

GiAi
; i ¼ 1; 2; 3 ð3Þ

where ci is a constant depending on the cross-sectional shape of the structural member. Note that the effects

of both the transverse shear and the moment of inertia in the constraining layer, the host beam and the

sensor layer are taken into account in Eq. (1).

The stress resultants and bending moments in Eq. (1) can be derived as follows;

T1 ¼ E1bh1u1;x � be311V ðtÞ; M1 ¼
E1bh3

1

12
w1;x

T2 ¼ E2bh2u2;x; M2 ¼
E2bh3

2

12
w2;x

T3 ¼ E3bh3u3;x; M3 ¼
E3bh3

3

12
w3;x

ð4Þ

where V ðtÞ is the uniformly distributed voltage applied on the actuator, E is the Young�s modulus, e311 is the
piezoelectric stress constant of the actuator layer.

The peel and shear stresses in the VEM layer can be expressed as

svðx; tÞ ¼ kvGv � cv ¼ kv

Z t

�1
Gvðt � sÞ ocvðx; sÞ

os
ds

rvðx; tÞ ¼ kvEv � ev ¼ kv

Z t

�1
Evðt � sÞ oevðx; sÞ

os
ds

ð5Þ

where � denotes the convolution integral, GvðtÞ and EvðtÞ are the relaxation functions of the VEM layer

subjected to shear and peel deformation, kv is a parameter describing the bonding condition of the ACLD

patch given by

kv ¼
0 debonding

1 perfect bonding

�
ð6Þ

In Eq. (5), cvðx; tÞ and evðx; tÞ are the shear and peal strains given by

cvðx; tÞ ¼
1

hv

½u2 � u1 � ðh1w1 þ h2w2Þ=2þ hvðw1;x þ w2;xÞ=2	

ev ¼ ðw2 � w1Þ=hv

ð7Þ

Note that ðw1;x þ w2;xÞ=2 in the shear angle in Eq. (7) is used to replace w;x in the well established formula

because of the difference between the transverse displacements in the constraining layer and the host beam.

When all layers are assumed to have the same transverse displacement w, and the shear effect in the host

beam and the constraining layer are not considered, the shear angle in Eq. (7) will be simplified to the well-

known form, i.e. cv ¼ ½u2 � u1 þ ðh1w;x þ h2w;xÞ=2þ hvw;x	=hv (Shen, 1994).
The shear and peel stresses in the adhesive layer between the sensor and the host beam can be expressed

as

sa ¼
Ga

ha

½u3 � u2 � ðh2w2 þ h3w3Þ=2þ haðw2;x þ w3;xÞ=2	

ra ¼
Ea

ha

ðw3 � w2Þ
ð8Þ

1636 D. Sun, L. Tong / International Journal of Solids and Structures 40 (2003) 1633–1651



For the sensor patch bonded on the lower surface of the host beam, the charge output can be evaluated by

qðtÞ ¼
Z xr

xl

be313u3;x dx ¼ be313½u3ðxrÞ � u3ðxlÞ	 ð9Þ

where e313 is the piezoelectric stress constant of the sensor, xl and xr are the coordinates of the left and right

ends of the sensor along the x-direction shown in Fig. 1.

2.2. Nondimensionalized equations

By introducing the following nondimensional variables

n ¼ x
L
; ~uui ¼

ui
h2

; ~wwi ¼
wi

h2

; eTTi ¼
Ti

E2bh2

; eQQi ¼
Qi

E2bh2

; i ¼ 1; 2; 3

eMMi ¼
Mi

E2bh2
2=12

; ~tt ¼ t
L2

ffiffiffiffiffiffiffiffiffiffi
E2h2

2

12q2

s
; eVV ðtnÞ ¼

e311V ðtÞ
E2h2

ð10Þ

where the tilde represent the nondimensional variables, and denoting the following 12 independent para-

meters

gi ¼
qiL

2

E2

ði ¼ 1; 2; 3Þ; a2 ¼
h2

L
; bi ¼

Ei

E2

; ui ¼
hi
h2

; ði ¼ 1; 3Þ

uv ¼
hv

h2

; ua ¼
ha
h2

; bev ¼
Ev

E2

; bv ¼
Gv

E2

; ba ¼
Ea

E2

ð11Þ

Eqs. (1)–(8) can be transformed into the following nondimensional equations in terms of the nondimen-
sional variables:

m1k2
t
€~uu~uu1 ¼ eTT1;n þ ~ssv; m1k2

t
€~ww~ww1 ¼ eQQ1;n þ ~rrv; I1k2

t
€ww1 ¼ eMM1;n þ rt1~ssv � rq1 eQQ1

m2k2
t
€~uu~uu2 ¼ eTT2;n � ~ssv þ ~ssa; m2k2

t
€~ww~ww2 ¼ eQQ2;n � ~rrv þ ~rra; I2k2

t
€ww2 ¼ eMM2;n þ rt2ð~ssv þ ~ssaÞ � rq2 eQQ2

m3k2
t
€~uu~uu3 ¼ eTT3;n � ~ssa; m3k2

t
€~ww~ww3 ¼ eQQ3;n � ~rra; I3k2

t
€ww3 ¼ eMM3;n þ rt3~ssa � rq3 eQQ3eTT1 ¼ eAA1~uu1;n � eVV ; eTT2 ¼ eAA2~uu2;n; eTT3 ¼ eAA3~uu3;neMMi ¼ eDDiwi;n; ~wwi;n ¼ ðeGGi

eQQi � wiÞ=a2; ði ¼ 1; 2; 3Þ

~ssv ¼ kvrv � ~uu2

j
� ~uu1 � pv1w1 � pv2w2 þ pv3

eQQ1 þ pv4 eQQ2

k
; ~rrv ¼ kvrev � ð~ww2 � ~ww1Þ

~ssa ¼ ra ~uu3

j
� ~uu2 � pa1w2 � pa2w3 þ pa3

eQQ2 þ pa4 eQQ3

k
; ~rra ¼ reað~ww3 � ~ww2Þ

ð12Þ

where the double dot represents the second order derivation with respect to the nondimensional time ~tt, and
the parameters can be expressed in terms of the independent parameters in Eq. (11) as follows:
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ai ¼ uia2; mi ¼ aigi; Ii ¼ miu
2
i ai; rti ¼ 6ui; rqi ¼

12

a2eAAi ¼ aibi; eDDi ¼ aibiu
2
i ;

eGGi ¼
2cið1� viÞ

biui

; ði ¼ 1; 2; 3Þ

rv ¼
bv

av

; rev ¼
bev

av

; ra ¼
ba

2ð1þ vaÞaa

; rea ¼
ba

aa

; kt ¼
1

L2

ffiffiffiffiffiffiffiffiffiffi
E2h2

2

12q2

s
¼

ffiffiffiffiffiffiffiffiffiffiffi
a3
2

12m2

s

av ¼ uva2; b2 ¼ 1; u2 ¼ 1; pv1 ¼
u1 þ uv

2
; pv2 ¼

u2 þ uv

2
; pv3 ¼

uv
eGG1

2
; pv4 ¼

uv
eGG2

2

pa1 ¼
u2 þ ua

2
; pa2 ¼

u3 þ ua

2
; pa3 ¼

ua
eGG2

2
; pa4 ¼

ua
eGG3

2

ð13Þ

Eq. (12) gives the nondimensional equations of the beam bonded with an ACLD patch, on which only the

electric load eVV ð~ttÞ is applied. The voltage eVV ð~ttÞ can be designed according to proper control laws in order to

perform the active vibration control of the composite beams.

2.3. Active control scheme

Since the transverse displacement of each piezoelectric actuator patch is not equal to that of the host

beam due to the small stiffness of the VEM layer, the active control may become more difficult. Therefore,
the following modal control method can be employed to perform active control of the beam with ACLD

patches.

To perform modal control of the beam, the modal velocities for the target modes should be observed first

from the charge outputs of the sensor patches. To this end, we design the modal velocity observer (MVO)

for the nth target mode as follows:

yn;ttðtÞ þ 2xcnf1nyn;ttðtÞ þ x2
cnynðtÞ ¼ x2

cnqðtÞ zn;ttðtÞ þ 2xcnf2nzn;tðtÞ þ x2
cnznðtÞ ¼ xcnyn;tðtÞ;

n ¼ 1; 2; . . . ;Nc ð14Þ
where xcn is the natural frequency of the observer, f1n and f2n are the damping ratios which can be adjusted

to make the closed-loop control more robust, and Nc is the number of the modes to be controlled. The

output znðtÞ of the observer is 180� out of phase with the target modal velocity when its frequency xcn is

equal to that of the target mode.

In order to actively control the Nc modes of the beam, the control voltage can be designed based on the
observed modal velocities by the Nc MVOs

V ðtÞ ¼
XNc

n¼1

gnznðtÞ: ð15Þ

where gn is the control gain for the nth mode. Eqs. (14) and (15) give a practical control scheme, which is

called MVO controller.

The charge output of the sensor and the control voltage can also be nondimensionalized. The non-

dimensional charge output of the nth sensor patch can be obtained from Eq. (9) as

~qqð~ttÞ ¼ qðtÞ
be313h2

¼ ~uu3ðnrÞ � ~uu3ðnlÞ ð16Þ

where nl and nr are the nondimensional co-ordinates at the left and right ends of the piezoelectric sensor

patch, respectively.

The nondimensional control voltages applied on the piezoelectric actuator

eVV ð~ttÞ ¼
XNc

n¼1

~ggn~zznð~ttÞ ð17Þ
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where ~zznð~ttÞ is the output of the nth MVO to the nondimensional charge ~qqð~ttÞ, and ~ggn are the nondimensional

control gains given by

~ggn ¼
gnbe311e313

E2

ð18Þ

Substituting Eq. (17) into Eq. (12), the motion equations of the closed-loop system can be obtained.

3. Control stability analysis and solution scheme

To analyze the effect of the ACLD patch debonding on the control stability of the beam, taking Laplace

transformation to Eq. (12), and denoting Y1ðnÞ ¼ ð�uu1; �TT e
1 ; �ww1;w1; �QQ1; �MM1ÞT, Y2ðnÞ ¼ ð�uu2; �TT2; �ww2;w2; �QQ2; �MM2ÞT,

Y3ðnÞ ¼ ð�uu3; �TT3; �ww3;w3; �QQ3; �MM3ÞT and Y ¼ ðYT
1 ;Y

T
2 ;Y

T
3 Þ

T
in which �TT e

1 ¼ �TT1 þ �VV ð~ssÞ, the nondimensionalized

equation (12) can be written into the following compact form

Y;n ¼ Aðkv; ~ssÞY nl 6 n6 nr ð19Þ

In Eq. (19), the overbar on the elements of Y stands for the Lapalace transformation, for example,

�uu1ðn; ~ssÞ ¼
Z 1

0

~uu1ðn;~ttÞe�~ss~tt d~tt ð20Þ

and Að~ssÞ 2 C18�18 is a matrix, in terms of complex parameter ~ss, which can be expressed as

Aðkv; ~ssÞ ¼
A11 A12 0

A21 A22 A23

0 A32 A33

24 35 ð21Þ

with

A11ð~ssÞ ¼

0 1=eAA1 0 0 0 0

m1s2 þ kvG�
v 0 0 kvG�

vpv1 �kvG�
vpv3 0

0 0 0 �1=a2
eGG1=a2 0

0 0 0 0 0 1=eDD1

0 0 m1s2 þ kvE�
v 0 0 0

kvrt1G�
v 0 0 I1s2 þ kvrt1G�

vpv1 rq1 � kvrt1G�
vpv3 0

26666664

37777775

A12ð~ssÞ ¼

0 0 0 0 0 0
�kvG�

v 0 0 kvG�
vpv2 �kvG�

vpv4 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 �kvE�
v 0 0 0

�kvrt1G�
v 0 0 kvrt1G�

vpv2 kvrt1G�
vpv2 0

26666664

37777775

A21 ¼

0 0 0 0 0 0

�kvG�
v 0 0 �kvG�

vpv1 kvG�
vpv3 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 �kvE�
v 0 0 0

�kvrt2G�
v 0 0 kvrt2G�

vpv1 �kvrt2G�
vpv3 0

26666664

37777775
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A22ð~ssÞ ¼

0 1=eAA2 0 0 0 0

m2s2 þ kvG�
v þ ra 0 0 pa1ra � kvG�

vpv2 �kvG�
vpv3 0

0 0 0 �1=a2
eGG1=a2 0

0 0 0 0 0 1=eDD2

0 0 m2s2 þ kvE�
v þ rea 0 0 0

rt2ðra � kvG�
vÞ 0 0 I2s2 þ rt2ðkvG�

vpv2 þ pa1raÞ rq2 � rt2ðkvG�
vpv4 þ pa3raÞ 0

26666664

37777775

A23ð~ssÞ ¼

0 0 0 0 0 0

�ra 0 0 pa2ra �pa4ra 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 �rea 0 0 0

�rt2ra 0 0 rt2rapa2 �rt2rapa4 0

26666664

37777775

A32 ¼

0 0 0 0 0 0

�ra 0 0 �pa1ra pa3ra 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 �rea 0 0 0
rt3ra 0 0 rt3rapa1 �rt3rapa3 0

26666664

37777775

A33ð~ssÞ ¼

0 1=eAA3 0 0 0 0

m3s2 þ ra 0 0 �rapa2 rapa4 0

0 0 0 �1=a2
eGG3=a2 0

0 0 0 0 0 1=eDD3

0 0 m3s2 þ rea 0 0 0

�rt3ra 0 0 I3s2 þ rt3rapa2 rq3 � rt3rapa4 0

26666664

37777775 ð22Þ

Note that in Eq. (22) s ¼ kt~ss, G�
vð~ssÞ and E�

vð~ssÞ are functions of ~ss. Indeed, after taking Laplace transfor-

mation, the nondimensional shear and peel stresses of the VEM in Eq. (12) become

�ssvðn; ~ssÞ ¼ kvG�
vð~ssÞ�ccvðn; ~ssÞ

�rrvðn; ~ssÞ ¼ kvE�
vð~ssÞ�eevðn; ~ssÞ

ð23Þ

Employing the Golla–Hughes–McTavish (GHM) model (McTavish and Hughes, 1993), the shear modulus

of the VEM in the s-domain has the following form:

G�
vð~ssÞ ¼

G1
v

E2av

1

24 þ
XK
k¼1

a
_

k
s2 þ 2f

_

kx
_

ks

s2 þ 2f
_

x
_

ksþ x
_2

k

35 ð24Þ

where a
_

k, f
_

k and x
_

k are constants that determine the shape of the modulus in s-domain.

Similarly, the extension modulus can also be expressed as

E�
vð~ssÞ ¼

E1
v

E2av

1

24 þ
XK
k¼1

a
^

k
s2 þ 2f

^

kx
^

ks

s2 þ 2f
^

x
^

ksþ x
^2

k

35 ð25Þ

where a
^

k, f
^

k and x
^

k are also constants used to determine the modulus.

It should be noted that Eq. (19) is a set of homogeneous equations and the control items related to the
voltage appear in the boundary conditions of the piezoelectric actuator patches for uniformly distributed

control voltage.
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Similarly, the equations of motion of the host beam itself (segment OA and BC) can also be transformed

into the following form:

Y2;n ¼ A2ð~ssÞY2 06 n6 nl; nr 6 n6 1 ð26Þ

where eAA2 2 C6�6 is the state matrix for the host beam as given by

A2ð~ssÞ ¼

0 1=eAA2 0 0 0 0

m2s2 0 0 0 0 0

0 0 0 �1=a2
eGG2=a2 0

0 0 0 0 0 1=eDD2

0 0 m2s2 0 0 0

0 0 0 I2s2 rq3 0

26666664

37777775 ð27Þ

In addition to the basic equations for different portions of the beam, the continuity conditions at the

debonding interface and boundary conditions for the host beam and the piezoelectric patches should also

be considered. The continuity condition to guarantee the displacement continuity and force balance at the

interface between the perfectly bonded and debonded parts in the ACLD patch can be expressed as

Yðn�
d Þ ¼ Yðnþ

d Þ ð28Þ

where nd is the nondimensional coordinate of the interface, as shown in Fig. 1. The boundary conditions for

the host beam and the piezoelectric actuator and sensor patch can be written as follows:

DhlY2ð0Þ þDhrY2ð1Þ ¼ Dh

DalY1ðnlÞ þDarY1ðnrÞ ¼ Da

DslY3ðnlÞ þDsrY3ðnrÞ ¼ Ds

ð29Þ

where Dhl, Dal, Dsl, Dhr, Dar and Dsr are 6� 6 matrices, Dh, Da and Ds are known vectors corresponding to

the given boundary conditions of the host beam, actuator and sensor patches, respectively. When the

boundary conditions are homogeneous for the host beam and the sensor patches, Dh ¼ Ds ¼ 0. In general,

the boundary condition of the piezoelectric actuator patch is not homogeneous due to the applied control
voltage. For instance, for a free–free piezoelectric actuator patch, the boundary condition has the form

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

26666664

37777775
�uu1ðnlÞ
�TT e
1 ðnlÞ
�ww1ðnlÞ
�ww1ðnlÞ
�QQ1ðnlÞ
�MM1ðnlÞ

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
þ

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

26666664

37777775
�uu1ðnrÞ
�TT e
1 ðnrÞ
�ww1ðnrÞ
�ww1ðnrÞ
�QQ1ðnrÞ
�MM1ðnrÞ

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
¼

1

0

0

1

0

0

26666664

37777775�VV ð~ssÞ ð30Þ

where �VV ð~ssÞ is the Laplace transformation of the nondimensioanal control voltage eVV ð~ttÞ. Taking Laplace

transformation to Eqs. (14), (16) and (17), yields

�VV ð~ssÞ ¼ �qqð~ssÞ
XNc

n¼1

gnHnð~ssÞ ¼ ½�uu3ðnr; ~ssÞ � �uu3ðnl; ~ssÞ	
XNc

n¼1

gnHnð~ssÞ ð31Þ

where Hnð~ssÞis the transfer function of the nth modal velocity observer given by

Hnð~ssÞ ¼
x3

cns
ðs2 þ 2xcnf1nsþ x2

cnÞðs2 þ 2xcnf2nsþ x2
cnÞ

ð32Þ
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Substituting Eq. (31) into Eq. (30), gives

DalY1ðnlÞ þDarY1ðnrÞ þDclY3ðnlÞ þDcrY3ðnrÞ ¼ 0 ð33Þ

where

Dcl ¼

PNc

n¼1

gnHnð~ssÞ 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0PNc

n¼1

gnHnð~ssÞ 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

26666666664

37777777775
; Dcr ¼

�
PNc

n¼1

gnHnð~ssÞ 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

�
PNc

n¼1

gnHnð~ssÞ 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

26666666664

37777777775
ð34Þ

The boundary conditions in Eq. (33) give the relationship between the actuator and the sensor patches,

which depends on the control law.
To investigate the debonding of the ACLD patch on both passive and hybrid control of the beam, an

effective way is to examine the eigenvalues of the beam, which give many useful information such as modal

frequencies, modal damping ratios. More importantly, the eigenvalues of the beam can be used to judge the

control stability and the degree of stability of the controlled system. The characteristic equation of the beam

with a partly debonded ACLD patch can be derived as follows.

After taking Laplace transformation, the partial differential equations of motion of the beam with and

without ACLD patch become a set of ordinary differential equations as given in Eqs. (19) and (26). For

different portions, the solutions of these equations can be written as follows:

�YY2ðnlÞ ¼ UOAð~ssÞ�YY2ð0Þ 0 < n < nl

�YYðn�
d Þ ¼ UADð~ssÞ�YYðnAÞ nA < n < n�

d

�YYðnrÞ ¼ UDBð~ssÞ�YYðnþ
d Þ nþ

d < n < nr

�YY2ð1Þ ¼ UBCð~ssÞ�YY2ðnrÞ nr < n < 1

ð35Þ

where UOA 2 R6�6, UAD 2 R18�18, UDB 2 R18�18 and UBC 2 R6�6 are transition matrices given by

UOAð~ssÞ ¼ eA2ð~ssÞnl ; UBCð~ssÞ ¼ eA2ð~ssÞð1�nrÞ

UADð~ssÞ ¼ eAð0;~ssÞðnd�nlÞ; UADð~ssÞ ¼ eAð1;~ssÞðnr�nd Þ
ð36Þ

By adding following continuity and homogeneous boundary conditions

Y2ðnlÞ ¼ ½ 06 I6 06	YðnlÞ at n ¼ nA

Yðn�
d Þ ¼ Yðnþ

d Þ at n ¼ nd

Y2ðnrÞ ¼ ½ 06 I6 06	YðnBÞ at n ¼ nB

DalY1ðnlÞ þDarY1ðnrÞ þDclY3ðnlÞ þDcrY3ðnrÞ ¼ 0 for actuator

DslY3ðnlÞ þDsrY3ðnrÞ ¼ 0 for sensor

DhlY2ð0Þ þDhrY2ð1Þ ¼ 0 for host beam

ð37Þ

and denoting Z ¼ ½YT
2 ð0Þ;YT

2 ðnlÞ;YTðnlÞ;YTðn�
d Þ;YTðnþ

d Þ;YTðnrÞ;YT
2 ðnrÞ;YT

2 ð1Þ	
T
, Eq. (37) together with the

continuity and boundary conditions can be written into the following compact form

Rð~ssÞZ ¼ 0 ð38Þ
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where

Rð~ssÞ ¼

UOA �I6 0 0 0 0 0 0

0 I6 ½06 �I6 06	 0 0 0 0 0

0 0 UAd �I18 0 0 0 0

0 0 0 I18 �I18 0 0 0

0 0 0 0 UdB �I18 0 0
0 0 0 0 0 ½06 I6 06	 �I6 0

0 0 0 0 0 0 UBC �I6
0 0 ½Dal 06 Dcl	 0 0 ½Dar 06 Dcr	 0 0

0 0 ½06 06 Dcl	 0 0 ½06 06 Dcl	 0 0

Dhl 0 0 0 0 0 0 Dhr

2666666666666664

3777777777777775
ð39Þ

Eq. (38) has a nontrivial solution only when

det½Rð~ssÞ	 ¼ 0 ð40Þ

Eq. (40) is an algebraic equation of the complex eigenvalue ~ss, from which the eigenvalues of the beam with

debonded ACLD patches can be solved. When computing the eigenvalues, the ACLD patch should be

divided into several small segments in order to obtain the eigenvalues with higher precision. Each complex

eigenvalue gives the information of active damping and frequency for each vibration mode. For instance,

the real part of an eigenvalue ~ss is proportional to the damping ratio of a mode, and its imaginary part is the

nondimensional damped modal frequency. Most importantly, the eigenvalues can be used for a control

stability analysis by examining the signs of their real parts. If all the eigenvalues have negative real parts,

the controlled beam is asymptotically stable.

4. Comparison with other models

In the present model, not only the incompatibility of the transverse displacement in the constraining

layer and the host structure, but also their inertia and shear effects are considered. In addition, the adhesive
layer between the host structure and the piezoelectric layer is also modeled. To validate the proposed

model, comparisons with the results from literatures are given in this section.

An example of a cantilever beam treated with an ACLD patch but without a piezoelectric sensor patch

based on an existing model can be found in Shi et al. (2001), as shown in Fig. 2. Using the finite element

method (FEM) (the total element number is 10) and one term GHM model of the VEM, Shi et al. (2001)

calculated the first five eigenvalues of a beam whose dimensional and physical properties are given in Table

1. The real and imaginary parts of the first five eigenvalues given in Shi et al. (2001) are listed in Table 2.

m1826.0

m027.0

0.2616m

O A D B C

Fig. 2. Beam treated with an ACLD patch (without sensor patch).
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For the purpose of comparison, the first five complex eigenvalues are also calculated using the present
model. In the computation, in addition to the parameters as given in Table 1, the Poisson�s ratios for the

piezoelectric and the host beam are taken as l1 ¼ l2 ¼ 0:3 to determine the shear modulus. Moreover, the

Young�s modulus Ev of the VEM is simply assumed to be G1
v =ð2ð1þ lvÞÞ and lv is taken as 0.4. The results

of the first five eigenvalues obtained by present model are listed in Table 2. To examine the effects of the

shear and inertia of the beam, the results obtained by employing the Euler–Bernoulli beam theory are also

given in Table 2.

Table 2 shows that the frequencies (imaginary parts of the eigenvalues) obtained by Timoshenko�s beam
theory are lower than those by Euler–Bernoulli beam theory particularly for the higher order modes.
However, no noticeable differences in the damping coefficients (the absolute values of the real parts of the

eigenvalues) obtained by the two theories are observed due to the small thickness-to-length ratio in this

example.

It can be found from Table 2 that all the five frequencies obtained by using the present model are smaller

than the corresponding ones from the results given in Shi et al. (2001) because of the consideration of the

compressional vibration in the VEM in the present model. In other words, when the compressional vi-

bration in the soft VEM is modeled, the equivalent bending stiffness of the entire composite beam becomes

smaller. The relative differences for the first five frequencies are 0.38%, 0.68%, 1.06%, 1.74% and 2.98%.
Table 2 also shows that the first four damping coefficients calculated using the present model are also

smaller than those by Shi et al. (2001) and the relative differences between them are 15.27%, 11.14%, 3.81%

and 6.48%, respectively. One the contrary, the damping coefficients for the fifth mode obtained by the

present model is larger than the corresponding result given in Shi et al. (2001) and the relative difference for

the fifth mode is 3.22%. This is because the higher order modes are more sensitive to the compressional

vibration. Another reason for this may be that the eigenvalues corresponding to the higher order modes

obtained by FEM is not accurate if the element number is small (Lee and Kim, 2001). Lee and Kim (2001)

show that the modal damping for higher order modes of a beam fully treated with an ACLD layer cal-
culated by FEM become larger as the element number increases.

Another example of a beam with fully covered ACLD layer can be found in (Lee and Kim, 2001) in

which the same parameters are used except the Young�s modulus of the piezoelectric layer is 64.9 GPa

Table 1

Material properties and geometrical dimensions

L 0.2616 m h2 0.002286 m E1 74� 109Pa n̂n 4.0

xl 0.027 m hv 0.00025 m E2 71� 109Pa

xr 0.1286 m ql 7600 kg/m3 G1
v 5� 105Pa

b 0.0127 m q2 2700 kg/m3 a 6.0

h1 0.000762 m qv 1250 kg/m3 x̂x 10000 rad/s

Table 2

The first five eigenvalues obtained by the present model and that given in Shi et al. (2001)

Mode no. Present model

FEA result (Shi et al., 2001)Timosenko�s theory Euler�s theory

Real Imaginary Real Imaginary Real Imaginary

1 )1.900 
174.467 )1.900 
174.478 )2.2424 
175.124

2 )11.557 
938.020 )11.561 
938.375 )13.006 
944.466

3 )37.713 
2747.575 )37.769 
2750.087 )39.206 
2776.994

4 )22.788 
5116.646 )22.858 
5125.073 )24.368 
5207.037

5 )22.817 
8666.016 )22.856 
8686.915 )22.105 
8932.071
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instead of 74 GPa. Using a spectral finite element model in which all layers are assumed to have the same
transverse displacement, the passive damping ratios for the first five modes are given in Table 3. The first

five eigenvalues and the corresponding damping ratios obtained by the present model are also listed in

Table 3.

It can be seen from Table 3 that the damping ratios obtained using the current model are smaller than

those of the models in which no compressional vibration is modeled. Their relative differences range from

7.7% to 10%, as tabulated in Table 2. This is because the compressional vibration of the VEM decreases its

shear strain and consequently weakens its passive damping effect.

In summary, due to the consideration of the compressional vibration of the VEM in the present model,
both the passive damping ratios and the modal frequencies obtained by the present model are smaller than

those obtained by the existing models. For a thicker VEM, the differences may become even larger.

5. Example and analysis

As an illustrative example, consider a cantilevered beam treated with an ACLD patch, as shown in Fig. 1.

The nondimensional length of the ACLD patch is 0.39 and the nondimensional distance from the clamped

end of the beam to the left end of the ACLD patch is 0.103. The physical parameters used in the example

are v1 ¼ v2 ¼ v3 ¼ 0:3, mv ¼ 0:4, ma ¼ 0:34, a2 ¼ 0:0087, b1 ¼ 1:04, b3 ¼ 0:986, g1 ¼ g3 ¼ 7:33� 10�9,

g2 ¼ 2:6� 10�9, bvðsÞ ¼ 7:04� 10�6 1þ 6 s2þ80000s
s2þ80000sþ108

� �
, bev ¼ 1:97� 10�5, ba ¼ 0:01, bea ¼ 0:028,

u1 ¼ 0:333, u3 ¼ 0:131, uv ¼ 0:11, ua ¼ 0:066.

For the beam with perfectly bonded ACLD patch, the first eight eigenvalues of the open-loop system are

calculated and listed in Table 4. It is shown that all the real parts of these eigenvalues are negative due to the

Table 3

Comparison of passive damping ratios obtained by the present model and the spectral element method (Lee and Kim, 2001)

Mode no. Present model Spectral element model (Lee and Kim, 2001) Relative

differencesEigenvalues Damping ratios Damping ratios

1 )9.154
 171.184I 0.0534 0.0589 9.34%

2 )75.327
 980.170I 0.0766 0.0830 7.71%

3 )96.187
 2590.600I 0.0371 0.0403 7.94%

4 )83.624
 4785.97I 0.0175 0.0192 8.85%

5 )64.877
 7583.3I 0.00855 0.0095 10%

Table 4

The first eight eigenvalues of beam with perfectly bonded ACLD patch

Mode no. Open-loop Closed-loop

MVO controller PD controller

1 �0:020þ 4:329I �0:424þ 4:0224I �0:022þ 4:327I
2 �0:118þ 20:744I �0:580þ 20:508I �0:205þ 20:696I
3 �0:685þ 65:919I �1:649þ 65:540I �5:154þ 64:328I
4 �0:354þ 120:501I �0:580þ 120:618I �3:892þ 118:640I
5 �0:306þ 207:930I �0:295þ 207:976I �3:270þ 206:082I
6 �0:305þ 294:962I �0:283þ 294:989I �6:307þ 288:883I
7 �0:216þ 412:81I �0:217þ 412:809I 0:318þ 413:622I

8 �0:181þ 503:342I �0:181þ 503:342I �0:202þ 503:293I
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passive damping effect of the constrained VEM. The damping effect of the ACLD can be significantly

enhanced by the active control.

5.1. Comparison between MVO and PD controller

In active control, the proportional plus derivative (PD) controller is widely used and the control voltage

is designed aseVV ð~ttÞ ¼ �gp~qqð~ttÞ � gd _~qq~qqð~ttÞ
where gp and gd are the nondimensional control gains. When gp ¼ 0 and gd ¼ 7:4� 10�4, the eigenvalues of

the controlled beam are presented in Table 4. It can be seen that the active damping are added to the first six

modes by the active control. The PD controller cannot concentrate the control energy properly to the target

modes. For example, the active control adds only small active damping to the dominant mode 1 and mode

2, whereas it produces relatively larger active damping to mode 3 to mode 6. In addition, the seventh mode
becomes unstable since the corresponding eigenvalue has a positive real part caused by the PD control. The

reason for the destabilization of the higher modes is that the actuator and the sensor do not undergo the

identical vibration due to the soft VEM between the actuator and the host beam. Therefore, the infor-

mation related to the modes with higher order should be removed from the sensed signal to keep the entire

control system stable.

Since the MVO functions as a band-pass filter, the MVO controller can be used to perform modal

control of the designated modes without remarkably affecting the residual modes. In order to control the

first four modes, according to the control law in Eq. (14), the nondimensional control gains are taken as 0.3,
0.09, 0.015 and 0.006, respectively. The damping ratios in the observers in Eq. (14) for these controlled

modes are 0.5 and 0.6, respectively, and the four frequencies of the open-loop beam, 4.329, 20.744, 65.919

and 120.501, are taken as the natural frequencies of the four observers. For the beam with perfectly bonded

ACLD patch controlled by the MVOs, the first eight eigenvalues are also obtained and given in Table 4. As

shown in Table 4, the first four modes are effectively controlled and the residual modes are not affected by

the active control and they still remain stable. Unlike the PD controller, the control gains in the MVO

controller can be selected independently so that the control energy can be distributed properly among the

controlled modes. Compared to the PD controller, the MVO controller is more robust and is to be used in
the following discussion.

5.2. Effect of debonding

To examine the effects of the ACLD debonding on the passive and hybrid control, an edge debonding

between the actuator and the host beam at the left end of the ACLD patch is introduced. When the

debonding length is taken as 5%, 10%, 15%, 20%, 25% and 30% of the entire ACLD patch, respectively, the

first five eigenvalues of both the passively and hybridly controlled beam are calculated and given in Table 5.

Since the debonded part of the piezoelectric actuator can also vibrate in a way approximately similar to a
small cantilever beam, additional modes are induced, and the eigenvalues for the additional modes are also

listed in Table 5.

First, we check the effects of the edge debonding of the ACLD patch on frequencies. Fig. 3 depicts the

frequency changes of the first five frequencies of the passively controlled beam versus the debonding length.

It shows that each frequency does not simply decrease as the debonding length increases and exhibits a

complicated trend dependent on the debonding length. It is noted from Fig. 3 that the additional modes

induced by the edge debonding of the ACLD patch can significantly affect the modal frequencies of the

composite beam, which can be observed clearly from the relative frequency change shown in Fig. 4. When
the debonding is in such a small range that the frequencies of the induced additional modes are very high
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and beyond the considered frequency range, the several lower frequencies of the composite beam decrease

with expansion of the debonding. For example, a 5% debonding results in 0.14%, 0.02%, 0.45%, 0.64% and

1.1% of decrease of the first five frequencies, respectively. However, the modal frequencies, which are close

to those of the debonding-induced modes, will either increase or decrease noticeably, as shown in Fig. 4 and

Table 5. Fig. 3 reveals that the additional modes tend to push their neighbor modes away from themselves.

Table 5

The effect of debonding on the eigenvalues of open- and closed-loop system

Debonding length (%) Open-loop Closed-loop

0 �0:020þ 4:329I �0:424þ 4:0224I
�0:118þ 20:744I �0:580þ 20:508I
�0:685þ 65:919I �1:649þ 65:540I
�0:354þ 120:501I �0:580þ 120:618I
�0:306þ 207:930I �0:295þ 207:976I

5 �0:016þ 4:323I �0:296þ 4:116I
�0:117þ 20:740I �0:540þ 20:503I
�0:639þ 65:621I �1:482þ 65:225I
�0:275þ 119:727I �0:443þ 119:810I
�0:284þ 205:632I �0:270þ 205:699I

10 �0:013þ 4:318I �0:221þ 4:161I
�0:114þ 20:732I �0:495þ 20:504I
�0:576þ 65:199I �1:294þ 64:835I
�0:151þ 117:301I �0:238þ 117:340I
�0:304þ 164:085Ia �0:340þ 164:203Ia

�0:256þ 217:768I �0:256þ 217:882I

15 �0:011þ 4:314I �0:168þ 4:191I
�0:110þ 20:719I �0:446þ 20:506I
�0:478þ 64:394I �1:047þ 64:069I
�0:097þ 96:159Ia �0:097þ 96:158Ia

�0:306þ 126:064I �0:459þ 126:165I
�0:245þ 214:413I �0:236þ 214:447I

20 �0:008þ 4:311I �0:129þ 4:214I
�0:104þ 20:701I �0:394þ 20:505I
�0:161þ 59:948Ia �0:333þ 59:807Ia

�0:390þ 70:825I �0:701þ 70:750I
�0:184þ 122:970I �0:281þ 123:024I
�0:238þ 214:245I �0:227þ 214:283I

25 �0:007þ 4:308I �0:099þ 4:232I
�0:095þ 20:674I �0:342þ 20:498I
�0:043þ 45:770Ia �0:043þ 45:770Ia

�0:435þ 66:449I �0:879þ 66:274I
�0:117þ 122:341I �0:175þ 122:373I
�0:238þ 213:491I �0:227þ 213:531I

30 �0:005þ 4:306I �0:076þ 4:246I
�0:084þ 20:624I �0:289þ 20:468I
�0:042þ 34:695Ia �0:041þ 34:688Ia

�0:356þ 65:717I �0:717þ 65:555I
�0:068þ 121:943I �0:097þ 121:958I
�0:220þ 205:090I �0:211þ 205:137I
�0:088þ 234:315Ia �0:087þ 234:316Ia

a Indicates the additional modes induced by the debonding of the ACLD patch.
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For instance, when the first additional mode induced by a 10% edge debonding lies between the fourth and

fifth modes of the beam, it leads to a 2.7% reduction of the fourth modal frequency but a 4.7% increase of

the fifth. In fact, an edge debonding has changed the original structure into a different structure, which has
a completely new frequency structure particularly in the higher frequency range.

Second, the effects of the edge debonding on the passive control of the beam are investigated. The

obtained damping ratios from the eigenvalues for different debonding length are plotted in Fig. 5. Fig. 5

shows that the debonding can significantly change the passive damping ratios. The passive damping ratios

for mode 1, 2, 3 and 5 are reduced by the ACLD debonding. For example, when an 15% debonding occurs

at the left end of the ACLD patch, the passive damping ratios for these modes reduced by 44.8%, 6.7%,

28.6% and 22.4%, respectively. The modal damping ratios of mode 1, 2 and 5 decrease as the debonding

length increases. However, the trend of damping ratio change is different for mode 3 and mode 4 at some
debonding lengths. For example, when the debonding length is 15%, the damping ratio of the fourth mode

is much larger than those with other debonding lengths. This means that the additional modes induced by

the ACLD debonding affect not only the modal frequencies, but also the modal damping ratios of their

neighbor modes of the composite beam.
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Finally, we examine the effects of the ACLD debonding on the active control. The hybrid (passive plus

active) damping ratios of the first five modes of the closed-loop controlled beam for different debonding

lengths are plotted in Fig. 6. Similar to the open-loop case, even a small debonding of the ACLD can lead

to a significant reduction of the hybrid damping ratios of the controlled modes. For instance, a 10% edge

debonding at the left end of the ACLD patch decreases the damping ratios for controlled four modes by
49.4%, 14.6%, 20.7% and 57.8%, respectively. Since the active control provides the control modes with

active damping which can be much larger than their passive damping, the effect of the ACLD debonding on

the hybrid control is more significant than the passive. As shown in Figs. 4 and 5, a 15% debonding results

in a 44.8% and 6.7% reduction in passive damping for the first and second modes, but a 61.8% and 22.4%

reduction in their hybrid damping in a closed-loop system. In this case, the close-loop control may be more

sensitive to the ACLD debonding. To reduce the effect of ACLD debonding on active control, the con-

troller used in the structure with perfectly treated ACLD should be carefully re-designed after debonding

occurs. For instance, real-time update of the frequency in the MVO controller may improve the active
control worsened by ACLD debondings.

It is interesting to note the effects of active control on the additional modes. In general, the MVO

controller does not affect either the frequencies or the damping ratios of the debonding-induced additional
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modes since the controller is designed to control the first four modes of the composite beam. It can be

clearly seen from Table 5 that the additional mode for 25% or 30% is not affected by the MVO controller at

all because its frequency is far away from the four target frequencies (i.e., 4.329, 20.744, 65.919 and

120.501). However, when the frequency of an additional mode is close to one of the target frequencies of the
controller, its damping ratio will also increase since the MVO controller will treat it as a target mode. A

typical example can be found in Table 5 when the debonding length is 20%. In this case, the first additional

mode has a frequency of 59.95, which is close to the third target frequency of the MVO controller, its

damping ratio is increased from 0.27% to 0.56% by the closed-loop control. However, the active damping

effect of the controller on the third mode of the beam is remarkably weakened, as shown in Fig. 6. This is

because the additional mode, which has a close frequency, shares part of the control energy.

6. Conclusion

Effects of the debonding in the ACLD patch on both passive and hybrid control of a composite beam is

investigated based on a new model. In this model, both compressional and shear vibration of the VEM

layer are considered to describe the debonding of in the VEM layer. In order to properly model the ad-

ditional modes induced by an edge debonding with small size, the inertia and shear effects of the host beam,

the piezoelectric actuator and sensor are also taken into account. A solution scheme for finding the complex
eigenvalues of such a detailed model is given. The simulation example results show that an edge debonding

of the ACLD patch can significantly affect the passive and hybrid control. It is also found that the addi-

tional mode induced by the debonding has unique effects on the modal damping ratios and frequencies of

both open-loop and closed-loop system.
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